Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool

author

  • Bin Li School of Mechanical Engineering, Luoyang Institute of Science and Technology
Abstract:

Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate whereas in the theoretical relationships, these properties were simply kept constant. According to the analysis, the maximum deformation and effective stress showed an increasing trend for the machining with end-milling cutting tool. A reasonable set of milling parameters for the machining of titanium alloy by coated cemented carbide cutting tool were obtained by analyzing the cutting efficiency in relation to cutting force of the tools. It is expected that this study would provide a fundamental basis for the optimization of the cutting parameters for titanium alloy.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Evaluation of Flank Wear of Iron-rich Binder Carbide Cutting Tool in Turning of Titanium Alloy

Despite the fact that Titanium material has been considered as difficult to cut material, its usage has been increasing day by day in all engineering sectors; wherever criticality is encountered. Many studies are going on in view of increasing tool life at high cutting speed to improve productivity. In this study, attempt has been made to see the effect of iron as a partial substitution  along ...

full text

Cutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools

 In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...

full text

An Experimental Study of Tool Wear and Cutting Force Variation in the End Milling of Inconel 718 with Coated Carbide Inserts

ABSTRACT Inconel 718 is a difficult-to-cut nickel-based superalloy commonly used in aerospace industry. This paper presents an experimental study of the tool wear propagation and cutting force variations in the end milling of Inconel 718 with coated carbide inserts. The experimental results showed that significant flank wear was the predominant failure mode affecting the tool life. The tool fla...

full text

Modeling of Tool Wear in Turning EN 31 Alloy Steel using Coated Carbide Inserts

The experimental investigations of the tool wear in turning of EN 31 alloy steel at different cutting parameters are reported in this paper. Mathematical model has been developed for flank wear using response surface methodology. This mathematical model correlates independent cutting parameters viz. cutting speed, feed rate and depth of cut with dependent parameters of flank wear. This model is...

full text

Dynamic neural network approach for tool cutting force modelling of end milling operations

This paper uses the artificial neural networks (ANN’s) approach to evolve an efficient model for estimation of cutting forces, based on a set of input cutting conditions. Neural network algorithms are developed for use as a direct modeling method, to predict forces for ball-end milling operations. Prediction of cutting forces in ball-end milling is often needed in order to establish automation ...

full text

Development of Cutting Force Model by FEM Approach and Experimental Investigation of Tool Wear for CNC end Milling in Machining of Titanium alloy Ti-6Al-4V

This paper presents the development of a cutting force model for end milling process under various cutting conditions and the tool wear is measured by Scanning Electron Microscope (SEM).This novel approach combines the concept of experimental design and finite element modeling of the cutting process which allows for a fairly accurate prediction of cutting forces with a significantly lower compu...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 28  issue 7

pages  1090- 1098

publication date 2015-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023